BMS 631 "Why the flow cytometer was developed"

Flow Cytometry: Theory: Lecture 1 J. Paul Robinson

The SVM Professor of Cytomics Professor of Biomedical Engineering Colleges of Veterinary Medicine & Engineering Purdue University

All materials used in this course are available for download on the web at Link to Lecture page http://tinyurl.com/2wkpp

Notice: The materials in this presentation are copyrighted materials. If you want to use any of these slides, you may do so if you credit each slide with the author's name. It is illegal to place these notes on CourseHero or any other site.

Lab, Lynn Hall, G221 Purdue University Office: (765)-494 0757 email; Robinson(at)flowcyt.cyto.purdue.edu WEB http://www.cyto.purdue.edu

- Introduction
- Course Requirements
- Lecture Series: 2020

©1990-2020 J. Paul Robinson, Purdue University BMS 631

Structure of this course

- Lectures: The class consists primarily of lectures and lecture discussions with mini tutorials as necessary.
- Practicals: There are no practical components to the 631 course. We will however, look at some instruments and instrument components to gain some perspectives.
- Quizes: There is an end of term quiz take home quiz (65%).
- Homework reading & attendance, and student Seminar: 35% of grade
- Seminar: Each student must present a seminar at the conclusion of the course. This seminar must be discussed with the course director prior to preparation. This is worth 25% of the final grade and will be composed of attendance and presentation. You must give me an outline and discuss the seminar with me at least one week prior to presentation. You must provide me with a copy of the original PPT file. Only one student can present on any particular topic.

Sources of information

- Flow Cytometry and Sorting, 2nd ed. (M.R. Melamed, T. Lindmo, M.L. Mendelsohn, eds.), Wiley-Liss, New York, 1990 referred to here as MLM
- Flow Cytometry: Instrumentation and Data Analysis (M.A. Van Dilla, P.N. Dean, O.D. Laerum, M.R. Melamed, eds.), Academic Press, London, 1985 – referred to as VDLM
- Practical Flow Cytometry 3nd edition (1994),4th Ed (2003) H. Shapiro: Alan R. Liss, New York referred to as PFC
- Introduction to Flow Cytometry. J. Watson, Cambridge Press, 1991 referred to as IFC
- Methods in Cell Biology: v.40,41, 63, 64 Darzynkiewicz, Robinson & Crissman, Academic Press, 1994, 2000 MCB
- Data Analysis in Flow Cytometry: A Dynamic Approach-Book on CDROM M. Ormerod referred to as DAFC
- Flow Cytometry: First Principles. (2nd Ed) Alice Longobardi Givan, Wiley-Liss, 2001 referred to as AFCFP

More information on flow cytometry books can be found on our website at: http://www.cyto.purdue.edu/flowcyt/books/bookindx.htm

Note: All of these books are in Prof. Robinson's library in Lynn Hall, Room B140 and may be checked out for 24 hour periods.

Methods and Practical Assistance

- For help with protocols there are several choices including the MCB references on the previous slide (Methods in Cell Biology)
- The Handbook of Flow Cytometry Methods morphed into Current Protocols in Cytometry which is the definitive work on cytometry protocls

The course will use Shapiro:

Practical Flow Cytometry, 4nd edition (2003), Howard Shapiro, Wiley-Liss, New York, as the main reference text.

You can get a free copy of the text here <u>http://ls.beckmancoulter.com/en-us/flow-</u>cytometry/sidebar/research-tools/learning-tools/practical-flow-cytometry

http://www.beckmancoulter.de/Practical%20Flow%20Cytometry.html WORKS Supplementary books with good background materials Introduction to Flow Cytometry. J. Watson, Cambridge Press, 1991 (hard to find, but excellent) Flow Cytometry: First Principles. Alice Longobardi Givan, Wiley-Liss, 1992 (several editions) Flow Cytometry: A Practical Approach. M.G. Omerod, IRL Press, 1990 (good background) Methods in Cell Biology: vols 40,41. Darzynkiewicz, Robinson & Crissman, Academic Press, 1994 (several more recent volumes

9:18 PM

Additional Background Sources Go here to download: http://www.cyto.purdue.edu/flowcyt/educate/pptslide.htm

- Powerpoint presentations references as J.Paul Robinson (**JPR**); Robert Murphry (**RFM**), Carleton Stewart (**CS**)
- Web sources of these presentation are:
- <u>http://www.cyto.purdue.edu/flowcyt/educate/ppts</u> <u>lide.htm</u>
- http://www.cyto.purdue.edu/flowcyt/educate1.ht m

Additional Sources include the Purdue Cytometry CD-ROM series

http://www.cyto.purdue.edu/flowcyt/cdseries.htm

©1990-2020 J. Paul Robinson, Purdue University BMS 631

Page 6

- Introduction to the course.
- Discussion of texts and associated reading materials.
- Discussion of expectations of students and special concerns.
- Methods of evaluation and testing for the course.
- Allocation of special review areas and discussion of areas for presentation of laboratory seminar.
- Introduction to flow cytometry principles

References: (Shapiro pp 1-5; Watson pp 1-4; Givan pp 1-9)

Course Text

Shapiro, H. Practical Flow Cytometry, Wiley-Liss, New York, NY 4th Edition

NOTE: ONLY GET THE 4th EDITION

Note: Amazon.com and look for 2nd hand books for around \$10-\$50 (new price \$125 but may not be available) Despite being quite old, the core information in this books is tremendously useful and you will find it an excellent reference book.

OR

Download Free (you must register first) at

http://www.coulterflow.com/bciflow/practical.php

Student Seminars

Allowable Topics for Seminars

The topic for the student seminar must be based upon an understanding of a component of the technology. It must demonstrate a complete understanding of the principle involved and the application to biology.

Evaluation: The seminar counts for 25% of the course. See requirements below.

EXAMPLES OF PREVIOUS SEMINARS

- Evaluation of Small Particles using Flow Cytometry
- Kinetic Measurements using Flow Cytometry
- Monoclonal Antibodies, Avidin-Biotin Technology using Fluorescent Conjugates in Flow
- Fluorescent Molecules used in Flow Cytometry
- Optical Filters used in Flow Cytometry
- The Optical System in a Flow Cytometer
- The Fluidic System of a Flow Cytometer
- The Principles of Sorting in Flow Cytometry
- Parameters used in Flow Cytometry
- Parameters & Probes for Evaluation of DNA & RNA in Flow Cytometry
- Any other topic can be suggested

RULES: Presentations on research projects **WILL NOT BE ALLOWED**. The purpose of this seminar is to demonstrate your technical knowledge in a particular area of flow cytometry. The seminar may be recorded and must not exceed 15 minutes. All presentations must be made using Powerpoint. Electronic must be provided in advance for evaluation. All material must be approved by the course instructor before presentation.

Introduction to the terminology, types of measurements, capabilities of flow cytometry, uses & applications

- Comparison between flow cytometry and fluorescence microscopy
- Transmitted light
- Scatter
- Sensitivity, precision of measurements, statistics, populations
- Flow cytometry generally does not provide spatial information (exception would be Amnis[™] that does flow and imaging)

Publications using the keyword "flow cytometry" from

115,000 - refs 2010 125,411 - refs 2011 212,069 - refs 2020

The field of flow cytometry continually grows

9:27 PM

©1990-2020 J. Paul Robinson, Purdue University BMS 631

Page 11

- Technology that measures properties of single cells
- Measures fluorescence, light scatter, and other properties of cells and particles
- Can provide correlated data that links different population profiles

Commercial Instruments

©1990-2020 J. Paul Robinson, Purdue University BMS 631

What can Flow Cytometry Do?

- Enumerate particles in suspension
- Determine "biologicals" from "non-biologicals"
- Separate "live" from "dead" particles
- Evaluate 10⁵ to 5x10⁶ particles in less than 1 min
- Measure particle-scatter as well as innate fluorescence or 2° fluorescence
- Physically sort single particles for subsequent analysis

- Light scattered by a laser or other light source
- Specific fluorescence detection
- Hydrodynamically-focused stream of particles
- Electrostatic particle separation for sorting or chip-based sorting
- Multivariate data analysis capability

Definitions

Flow Cytometry

- Measuring properties of cells in flow

Flow Sorting

- Sorting (separating) cells based on properties measured in flow
- Also called Fluorescence-Activated Cell Sorting (FACS) – this is a proprietary term from BD this term can refer to sorting, but it is not usual to use it for analysis. FACS is thus frequently misused and likely by folks who learn flow on BD instruments. It is far better to use the term flow cytometry which is generic and covers both sorting and analysis.

Technical Components

Detection Systems

Photomultiplier Tubes (PMTs)

Historically 1-2 (old instruments) Current benchtop instruments 3-14 Complex instruments mostly 10-20 now up to 50 Array PMTs 32-40 (spectral system mostly)

Diodes

Light scatter detectors Cytoflex (Beckman Coutler is all APDs) APD arrays (spectral systems) SiPMs – next generation systems

Illumination Systems

Lasers 325, 350-363, 380, 405, 407, 420, 457, 488, 514, 532, 543, 568, 600, 633, 660nm +... 680nm, 801nm + others as developed

Argon ion, Krypton ion, HeNe, HeCd, Yag, solid state, diode

Arc Lamps

Mercury, Mercury-Xenon (most lines) (rarely used currently) Page 17

9:18 PM

©1990-2020 J. Paul Robinson, Purdue University BMS 631

Up to 1850's - only natural stains were available such as Saffron (which was what Leeuwenhoek used to stain muscle cells)

Ehrlich – used acidic and basic dyes to identify acidophilic, eosinophilic, basophilic and neutrophilic leukocytes 1880's to study the dynamics of ocular fluids- used fluorescein

Fluorescence UV Microscope - August Köhler - 1904

Pappenheim & Unna (early 1900's) - combined methyl green and pyronin to stain nuclei green and cytoplasm red

Robert Feulgen (1925) - demonstrated that DNA was present in both animal and plant cell nuclei - developed a stoichiometric procedure for staining DNA involving a derivatizing dye, (fuchsin) to a Schiff base

Andrew Moldavan

It is unclear if Moldavan ever built his cell counter. His short article (less than half a page) describes a number of problems but no results. "The purpose of the experiment is to have each microscopical cell passing through the capillary tube, register itself automatically on the photoelectric apparatus, thus creating a micro-current which can be amplified and recorded."

Manuscript:

Photo-Electric Technique for the Counting of Microscopical Cells

Andrew Moldavan Montreal, Canada Science 80:188-189, 1934

Moldavan (1934) demonstrates use of a suspending fluid in which were blood cells - the measurements were made in a capillary tube using a photoelectric sensor to make extinction measurements

9:18 PM

Moldavan's Paper

AUGUST 24, 1934

SCIENCE

SCIENTIFIC APPARATUS AND LABORATORY METHODS

PHOTO-ELECTRIC TECHNIQUE FOR THE COUNTING OF MICROSCOPICAL CELLS

THE technique of progressive dilutions used by early bacteriologists to isolate species and to estimate the probable number of cells is still applied in the determination of quanta of viruses, bacteriophages and enzymes.

The isolation and counting of bacterial and fungic adapt photoelectric methods to the direct counting of microscopical cells in suspension in water.

A capillary glass tube, made from a small tube elongated over a gas flame, is placed under the high magnification field of a microscope. The microscopical cells in suspension in water (red blood cells or neutral-red stained yeast cells) are forced under pressure to circulate through the capillary tube. A photoelectric apparatus of the smaller type is adjusted to the microscope's ocular and connected with an appropriate meter. The purpose of the experiment is to have each microscopical cell passing through the capillary tube, register itself automatically on the photoelectric apparatus, thus creating a micro-current which can be amplified and recorded.

The technical difficulties to overcome in such an experiment can be listed as follows:

 Difficulty to standardize capillary tubes in such way as to fill exactly the highest magnification field.

(2) Difficulty to flatten capillary tubes (as suggested by Sturges in his studies on bacterial motility) to insure proper focus.

(3) Necessity to shake dilution samples thoroughly to prevent clumping of cells in capillary tubes.

(4) Desirability of a specific photoelectric apparatus highly sensitive to microscopical objects. The ordinary commercial photoelectric apparatus is not built or intended for such purpose and shows only a faint reaction to magnified erythrocytes, neutral-red stained yeast cells or microscopical solid particles.

MONTREAL, CANADA

Andrew Moldavan

species have been so simplified by the introduction of solid culture media, differential stains and micromanipulation that the dilution technique, which in part is embodied in the standard plate count method, is no longer carried to its final point: *e.g.*, one organism per dilution bottle.

The following is a brief description of an attempt to

Science 24 Aug 1934: Vol. 80, Issue 2069, pp. 188-189 DOI: 10.1126/science.80.2069.188

Torbjorn Caspersson

1941 - demonstrated that "nucleic acids, far from being waste products, were necessary prerequesites for the protein synthesis in the cell (published in Naturwissenschaften in January 1941) and that they actively participated in those processes."

1950 - demonstrated that both DNA and RNA increase in actively growing cells famous monograph in 1950 "*Cell Growth and Cell Function*" described nucleic acid and protein metabolism during normal and abnormal growth. - These studies were made using a Cadmium spark source for a UV light, and primitive electronic circuits for detection of signals.

Used Feulgen stain to stain nuclei

9:18 PM

Fluorescence Labeling Technique

Coons et al 1941 - developed the fluorescence antibody technique - they labeled antipneumococcal antibodies with anthracene allowing them to detect both the organism and the antibody in tissue using UV excited blue fluorescence "Moreover, when Type II and III organisms were dried on different parts of the same slide, exposed to the conjugate for 30 minutes, washed in saline and distilled water, and mounted in glycerol, individual Type III organisms could be seen with the fluorescence microscope....."

ALBERT HEWETT COONS *1912—1978*

> A Biographical Memoir by HUGH O. MCDEVITT

Manuscript:

Immunological Properties of an Antibody Containing a Fluorescent Group

Albert H. Coons, Hugh J. Creech and R. Norman Jones Department of Bacteriology and Immunology, Harvard Medical School, and the Chemical Laboratory, Harvard University Proc. Soc. Exp.Biol.Med. 47:200-202, 1941

Coons and Kaplan (1950) - conjugated fluorescein with

isocyanate - better blue green fluorescent signal - further away from tissue autofluorescence. This method used a very dangerous

preparative step using phosgene gas

9:18 PM

He agreed to try to couple anthracene isocyanate to some antipneumococcal antiserum with which I provided him, and promptly did so. This antibody solution agglutinated specific pneumococci.

one. Fluorescein was chosen as the label because of the brilliance of its fluorescence and because no green-fluorescing materials had been reported in mammalian tissue.

> end, the free hand. Poincaré (7) wrote that the way to solve a difficult problem was first to work hard at it; then, when solutions fail to appear, to drop it. Do something else, or take a vacation, and give the subconscious a chance. First, the hard stocking of the mind with the facts, and the struggle over them; then the latent period, and finally, the sudden insight into the solution.

In order to do this, I needed a fluorescence microscope. Here I had another stroke of luck. Dr. Allan Grafflin.¹⁰ at that time an Assistant Professor of Anatomy, was engaged in the assembly of an apparatus for fluoresence microscopy. He had been my laboratory instructor in histology and now he enthusiastically put his resources at my service and indeed hastened the construction of the fluorescence microscope so that I could use it. This microscope was designed to be a powerful one. It had a 15-ampere direct current carbon arc light source and was mounted on a Zeiss photomicrographic optical bench.

O. N., Cancer Res., 7: 297, 1947.

- COONS, A. H., CREECH, H. J. AND JONES, R. N., Proc. Soc. Exper. Biol. & Med., 47: 200, 1941.
- COONS, A. H., CREECH, H. J., JONES, R. N., AND BERLINER, E., J. Immunol., 45: 159, 1942.
- 7. POINCARÉ, HENRI. Mathematical Creation, The Foundations of Science, translated by George Bruce Halsted, The Science Press, 1913.

"The Beginnings of Immunofluorescence" Albert H. Coons, J. Immunol. 87: 499-503, 1961

1. Synthesis of Fluorescein Isocyanate

The synthesis was carried out by the methods of Bogert and Wright (9), and of Coons, Creech, Jones, and Berliner (1). The procedure to be described is an improvement of these in that the two isomers of nitrollourescein theoretically possible from the fusion of 4-nitrophthalic acid and resortinol have been separated and purified by fractional crystallization of their diacetates.

The course of the synthesis was as follows: 4-nitrophthalic acid was heated with two equivalents of resortion(), with the production on introducescein. The crude product was refluxed with acetic anhydride, and the resulting nitroflorescein diacetate subjected to fractional crystallization. Two isomeric diacetates were separated. Each was saponified and the pure nitrofluorescein isomer recovered. Catalytic hydrogenation produced the corresponding animofluorescein, which was converted as needed to the isocyanate by treatment with phosegne. No attempt was made to isolate the isocyanates.

(a) Preparation of Nitroflavorencia --100 gm, of 4-altrophthalic acid⁴ and 100 gm, of resorcholv were inframely mixed in a backer and heated on an oil back at 19-20°C until the mass was dry (12 bours). When cosh, the matir was obliged from the backer, ground in a motir, and holded with 1000 m. 10 de NIC for th low. After washing by decramations with The resulting boursen parts was vashed on the formed with 3 liters of water, mind defined in the over an 110°C. Yield 105 gm, 050 gene core). Corelia aridigenteerscie.

oven a 110°C. Vield 176 gm. (08 per cent). *Curis minufuserscin.* (a) *Preparation of Nitroflowceico Discosta and Septomis of Ismerz.*—100 gm. of this crude minufuserscin was refluend with 400 gm. of acrit: anhydride for 2 hours, and set within yellow crudinal of discrata wave collected the next days an *Bachaeo* funds, and washed with two 10 mL perturbs of acritic anhydride, and 20 mL eshand (secluded from the firsta). Yield 21 gm. (17 per cent) (reciston 1).

The filtrate was concentrated by boiling to a volume of about 300 ml. and seeded as before Yield 11.2 gm. (9.5 per cent) (fraction 2). Fractions 1 and 2 were combined dissolved with heat in about 110 ml. acetic aphydride

Tractions 1 and 2 were commune; massive with near in about 10 m. about anyoritor, filtered hot, and set taskie to crystalling. Yield 25 gm. (20) Gpr cent), M.p. 213-219°C. After repeated recrystallizations from bensene and ethanol, m.p. 221-222.5°C Calculated for C_1,H_0,N : CG 247; H 3.28; N 3.04. Found: C 6.26.2; H 3.06; N 3.06.¹ *Nitrofluoressini discatta* 1. The filtrate from fraction 2 was concentrated to a thick nate *in same* on the boiling water

The nitrate from fraction 2 was concentrated to a mice paste in section on the bouing water bath. On cooling, the dark howing, the dark howing section 2 was added 90 mill benzene; the solution warmed to about 60°C., and stirred. The gum slowly mixed with the benzene, and crystallization began at once. After several hours the yellow-white asbestos-like needles

¹ Eastman Kodak Company.
 ⁸ All melting points are uncorrected.
 ⁹ Micro analyses by Miss Shirley Katz.

4 LOCALIZATION OF ANTIGEN IN TISSUE CELLS

were collected and washed quickly on the funnel with 30 ml. of cold benzene. Yield 33 gm. (26 per cent).

These needles were dissolved in 200 ml. benzees, fittered hot, and allowed to stand overnight. The resulting long white feathery needles were collected, washed quickly with about 40 ml. benzees, and dried in air. Yield 5 gm. (12 per cent). Mp. 189-190°C. After repeated recrystallization from benzees and ethanol, mp. 215-210°C. Calculated for $C_{14}H_{10}ON$: C $OA_{17}H$ $A_{25}H$ 30.4 Found: C $OA_{11}H$ $A_{25}H$ N N fordersceice disaction H.

(c). Recovery of Nutroflavercenie Izamer.--S guo 6 diacciza I was added to 100 mL ber fibered autoratio alsoholis esolima hybridica, warmed gentariy, and aback for a few minutes. An immediate red color resulted. The solution was filtered and posteri into 4 volumes of water, acididic with airring with 2 mL concentrate HI CA, and lowed to stand for several hours. The intoflaveration is more precipitated as a velow provider which was agenated with perform was crystellized from incorporation. The concentrate HI CA, and is a standard for a several perform was crystellized from incorporation. The concent crystel HC can be adapt but do not melt up to 330°C. Calculated for Calty-ON: C 63.66; H 2.93; N 3.71. Found: C 63.47; H 3.194, N 3.99. Nitroflaveration I.

To obtain the other introducescein issume, $T_{\rm gm}$ of once recrystalland dimetata II was added to 100 mL bottlered surrated adsholis NGM with string L of this can cystalliastion of the softium sail began promptly, and after 2 hours 5 gm. of enarge-cel crystals was disclosed to 100 mL or 100. The string wave values that the softium of 25 per contrast of the softium of 25 per cells of the softium of

(6) Relation of Netr Compound. -2 gm of introducerscin I was superhed in 100 m isolate tchand and ablaen with about 15 gm. Ranyu ruled in an atmosphere of hydrogen at room temperature and pressure. The reaction logan promply and at the end of 00 minutes the theoretical annual of H had been takine up. The altick of as a stronghene of the strong temperature of a strong temperature of the strong temperature of te

2 gm of altroflowerscin TI was reduced and crystallized as above scropt that 4 volumes of water was added to the akobb-unise solution. Canary reliew crystals witch did not darken in air and which were stable on storage resulted. Yieldi 1.12 gm. (67 per cent). Mp. 35-30⁴C, (66 composed) (put in halt a 2537, *status fourceast* 11, Miccin analyses on two different samples of this compound gave law values for C and N, a high value for H. For analysis, therefore, 66 mp. 67 million of a few drops of 2 x BCJ, and allowed to stand, free independent by warming and the addition of a few drops of 2 x BCJ, and allowed to stand. The red crystals were collected, dried in the desication with KoHT, and weighel. Yieldi

A. H. COONS AND M. H. KAPLAN

 $50~mg,~(82~per~cent).~This compound does not melt. Calculated for <math display="inline">C_{28}H_1,O_aN$ -HCl: C62.58;~H~3.68;~N~3.65;~Cl~9.24.~Found: C<math display="inline">62.66;~H~3.85;~N~3.67;~Cl~9.56.~Amino-fluorescein HCl II.

In common with fluorescein itself (20), each isomer of both nitro- and amino-fluorescein exists in a red and yellow form; the red form of amino-fluorescein II has been observed only on heating to about 150°C.

We have not attempted to determine which of the two possible positions in the molecule is occupied by the N atom in either of the two isomeric series described above.

(e) Preparation of Fluorescein Isocyanate.—The required amount of fluorescein amine (10 to 60 mg) was added to 5 ml. of dry acetone,⁴ and added dropwise from a dropping funnel to 15 ml. acetone saturated with phosgene, and through which phosgene was constantly bubbled.⁶ As each drop of amine solution entered the reaction flask a yellow precipitate formed which rapidly dissolved. The solution in the flask became slightly warm. The reaction flask was removed from the phosgene-train, three small anthracite chips added as an antibumping device, and the solution taken to dryness *in vacuo* over a water bath at 45°C. (10 to 15 minutes). This step served to remove the excess phosgene and acetone. The greenish brown gum was immediately dissolved in 2 volumes (1 to 2 ml.) of acetone and 1 volume of dioxane;⁶ and this solution of fluorescein isocyanate added dropwise to the stirred chilled protein solution described below. Care must be taken to exclude water from the isocyanate solution until the moment of use, as it decomposes rapidly at room temperature in the presence of water.

15 minutes). This step served to remove the excess phosgene and acetone. The greenish brown gum was immediately dissolved in 2 volumes (1 to 2 ml.) of acetone and 1 volume of dioxane,⁶ and this solution of fluorescein isocyanate added dropwise to the stirred chilled protein solution described below. Care must be taken to exclude water from the isocyanate solution until the moment of use, as it decomposes rapidly at room temperature in the presence of water.

5

"Localization of antigen in tissue cells. II. Improvements in a method for the detection of antigen by means of fluorescent antibody" Coons, A. H. & Kaplan, M. H, J. Exp Med 91:1013, 1950

Melvin Kaplan reflects on origins of immunofluorescence

"Immunohistochemistry has gradually become useful in many areas of biology. Till now its weakness as a scientific method has been the difficulty of quantitating it.

"Recently however, computer activated light microscopes have made possible the rapid measurement of $|\mu^2|$ areas of fluorescent cells. Such microscopes, attached to a computer, print out measurements of fluorescence intensity, allowing rapid comparison of the amount of antigen per unit area in various cells and parts of them. So far this ability is only beginning to be exploited.

CITATION CLASSIC - DISK-ELECTROPHORESIS OF BASIC-PROTEINS AND PEPTIDES ON POLYACRYLAMIDE GELS CC/LIFE SCI, (6): 19-19 1981 Original Paper : Reisfeld R A, Lewis U J & Williams D E. Disk electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature 195:281-3, 1962.

A1981KZ5820000

Ref#4488 This Week's Citation Classic

Coons A H & Kaplan M H. Localization of antigen in tissue cells. II. Improvements in a method for the detection of antigen by means of fluorescent antibody. J Exp Med. 91:1-13, 1950. [Dept. Bacteriology and Immunology, Harvard Med. Sch., Boston, MA]

A method employing the specificity of antibody labeled with fluorescein for the localization of antigen under the fluorescence microscope is presented. Included in the paper are a description of the synthesis of fluorescein isocyanate, the labeling material, and a method for removing over labeled proteins which bind indiscriminately to tissue elements and obscure specific reactions. [The SCI^{P} indicates that this paper has been cited over 1.465 times since 1961.]

> Albert H. Coons Department of Pathology Harvard Medical School Boston, MA 02115

> > January 14, 1981 (revised)

"This paper described improvements in the method published earlier for the specific localization of foreign antigenic materials in tissue cells.1 It was a general method tor the histological localization of any antigen because it utilized specific antibody labeled with fluorescein as a histochemical reagent. Diluted specific antibody solutions so labeled were flooded over tissue sections. Any antigen present bound the antibody and fixed it in place. Excess reagent could be washed away leaving the bound antibody in place and it in turn could be localized by bombardment by light of appropriate wave length and visualized under the fluorescence microscope. Naturally, the critical step was the binding of the fluorochromelabeled antibody by the antigen and the ability to wash away any excess fluorescent reagent. This principle joined the specificity of the antibody molecule to the resolving power of the light microscope; such a union

provided a general method now called immunohistochemistry for the investigation of native and foreign antigenic molecules in many locations and under many circumstances. Since then the same principle has been extended for use with the electron microscope by using antibody labeled with ferritin or with enzymes like horse radish peroxidase.

CC/NUMBER 6 FEBRUARY 9, 1

"Of course such reagents localizing and identifying antigens rapidly came to be used for the specific identification of various infectious agents: bacteria, rickettsiae, and viruses. It has also been applied to the study of autoimmune disease, e.g., nephritis, and in the detection of autoantibodies against tissue components. Immunofluorescence socalled therefore became a feature of the diagnostic, as well as the research, laboratory.

"Immunohistochemistry has gradually become useful in many areas of biology. Till now its weakness as a scientific method has been the difficulty of quantitating it.

"Recently however, computer activated light microscopes have made possible the rapid measurement of $|\mu^2$ areas of fluorescent cells. Such microscopes, attached to a computer, print out measurements of fluorescence intensity, allowing rapid comparison of the amount of antigen per unit area in various cells and parts of them. So far this ability is only beginning to be exploited.

"Surprisingly enough, and to the good fortune of anyone who wants to apply such a method, it has turned out that the antibody molecule is quite stable to many chemical manipulations and does not lose its specificity unless the label attaches itself close to the actual combining site.

"Addendum. Albert H. Coons died suddenly September 30, 1978. His commentary above is remarkably understated. The impact of this work on research in many biological disciplines, and, in particular, on studies of immunobiologic and pathologic processes is universally recognized. We remember him for the charm of his company, his penetrating wisdom, and his admonition: 'good research work stands on its own legs' "-Melvin H. Kaplan

 Coons A H, Creech H J, Jones R N & Berliner G. The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody. J. *Immunology* 45:159-70, 1942. [The SCI[®] indicates that this paper has been cited over 285 times since 1961.]

2:42 PM

Oswald T. Avery

• (1944) Oswald T. Avery (1887-1955) - demonstrated that DNA was the carrier of genetic information

The Discovery of the "Transforming Principle"

Avery's key discovery was that the transforming substance, which produced permanent, heritable change in an organism (pneumococci), was deoxyribonucleic acid.

The phenomenon of transformation, Avery wrote, "has been interpreted from a genetic point of view. The inducing substance has been likened to a gene, and the capsular antigen which is produced in response to it has been regarded as a gene product."

"...If the results of the present study on the chemical nature of the transforming principle are confirmed, then nucleic acids must be regarded as possessing biological specificity...." Journal of Experimental Medicine, 1944

https://doi.org/10.1074/jbc.R200002200

This article "Oswald T. Avery and the Nobel Prize in Medicine" is really worth reading

9:18 PM

©1990-2020 J. Paul Robinson, Purdue University BMS 631

- Developed a flow cytometer for detection of bacteria in aerosols
- Published paper in 1947 (work was done during WWII and was classified).
- Goal was rapid identification of airborne bacteria and spores used in biological warfare
- Instrument: Sheath of filtered air flowing through a darkfield flow illuminated chamber. Light source was a Ford headlamp, PMT detector (very early use of PMT)

Gucker's Apparatus

https://pubs.acs.org/doi/pdf/10.1021/cr60138a009

A Photoelectronic Counter for Colloidal Particles1 BY FRANK T. GUCKER, J R . , ~ CHESTER T. O'KONSKI,~ HUGH B. PICKARD3 AND JAMES N. PITTS, JR.4

H.P. Friedman

Friedman (1950) - combined acid fuchsin, acridine yellow and berberine for uterine cancer detection using fluorescence microscopy

Absorption Max 540-545

Reference: Friedman HPJr: The use of ultraviolet light and fluorescent dyes in the detection of uterine cancer by vaginal smear. Am J Obst Gynec 59:852, 1950 (ref 4482)

P.J. Crosland-Taylor

Sheath Flow Principle – 1952-3

"Provided there is no turbulence, the wide column of particles will then be accelerated to form a narrow column surrounded by fluid of the same refractive index which in turn is enclosed in a tube which will not interfere with observation of its axial content."

The whole apparatus is filled with gas-free distilled water which is allowed to flow via tubes 2 and 2ainto the wide tube 4 and into the vortex 5. Tube 6 is normally closed. The suspension of cells is then passed into the needle (1). As the stream of cells emerges from the tapered tip of the needle it is narrowed by the faster peripheral stream in 3, and as the vortex is approached the stream of cells narrows further as the velocity increases.

A Device for Counting Small Particles Suspended in a Fluid through a Tube P.J. Crosland-Taylor Bland-Sutton Institute of Pathology Middlesex Hospital, London, W.1. June 17, 1952 Nature 171: 37-38, 1953

9:18 PM

Watson & Crick-1953

The work which began with Avery's identification of DNA as the "transforming principle" thus led to research that overturned the old conception of DNA as a repetitive and simple molecule, confirmed DNA's role in genetic transmission, and, with James Watson and Francis Crick's 1953 paper, elucidated its structure. PUCL

9:18 PM

J. D. WATSON and F. H. C. CRICK Molecular Structure of Nucleic Acids Nature, 25 April 1953, VOL 171,737-738 1953

This is a picture of part of the original model built by Watson and Crick at Cambridge in 1953.

One wonders what they would have done if they had 3D software like we have today.....

This figure is purely diagrammatic. The two ribbons symbolize: the two phosphate—sugar chains, and the horizontal rods the pairs of bases holding the chains together. The vertical line marks the fibre axis

Molecular Structure of Nucleic Acids

737

No. 4356 April 25, 1953

NATURE

equipment, and to Dr. G. E. R. Deacon and the captain and officers of R.R.S. Discovery II for their part in making the observations.

Young, F. B., Gerrard, H., and Jevons, W., Phil. Mag., 40, 149 (1920).

Longuet-Higgins, M. S., Mon. Not. Roy. Astro. Soc., Geophys. Supp., 5, 285 (1949).

⁸ Von Arx, W. S., Woods Hole Papers in Phys. Oceanog. Meteor., 11 (3) (1950).

⁴Ekman, V. W., Arkiv. Mat. Astron. Fysik. (Stockholm), 2 (11) (1905).

MOLECULAR STRUCTURE OF NUCLEIC ACIDS

A Structure for Deoxyribose Nucleic Acid

WE wish to suggest a structure for the salt of deoxyribose nucleic acid (D.N.A.). This structure has novel features which are of considerable biological interest.

A structure for nucleic acid has already been proposed by Pauling and Corey¹. They kindly made their manuscript available to us in advance of publication. Their model consists of three intertwined chains, with the phosphates near the fibre axis, and the bases on the outside. In our opinion, this structure is unsatisfactory for two reasons : (1) We believe that the material which gives the X-ray diagrams is the salt, not the free acid. Without the acidic hydrogen atoms it is not clear what forces would hold the structure together, especially as the negatively charged phosphates near the axis will repel each other. (2) Some of the van der Waals distances appear to be too small.

Another three-chain structure has also been suggested by Fraser (in the press). In his model the phosphates are on the outside and the bases on the inside, linked together by hydrogen bonds. This structure as described is rather ill-defined, and for this reason we shall not comment

on it. We wish to put forward a radically different structure for the salt of deoxyribose nucleic acid. This structure has two helical chains each coiled round the same axis (see diagram). We have made the usual chemical assumptions, namely, that each chain consists of phosphate diester groups joining β-D-deoxyribofuranose residues with 3',5' linkages. The two chains (but not their bases) are related by a dyad perpendicular to the fibre axis. Both chains follow righthanded helices, but owing to the dyad the sequences of the atoms in the two chains run in opposite directions. Each chain loosely resembles Furberg's² model No. 1; that is, the bases are on the inside of the helix and the phosphates on the outside. The configuration of the sugar and the atoms near it is close to Furberg's 'standard configuration', the sugar being roughly perpendi-

cular to the attached base. There

is a residue on each chain every 3.4 A. in the z-direction. We have assumed an angle of 36° between adjacent residues in the same chain, so that the structure repeats after 10 residues on each chain, that is, after 34 A. The distance of a phosphorus atom from the fibre axis is 10 A. As the phosphates are on the outside, cations have easy access to them.

The structure is an open one, and its water content is rather high. At lower water contents we would expect the bases to tilt so that the structure could become more compact.

The novel feature of the structure is the manner in which the two chains are held together by the purine and pyrimidine bases. The planes of the bases are perpendicular to the fibre axis. They are joined together in pairs, a single base from one chain being hydrogen-bonded to a single base from the other chain, so that the two lie side by side with identical z-co-ordinates. One of the pair must be a purine and the other a pyrimidine for bonding to occur. The hydrogen bonds are made as follows : purine position 1 to pyrimidine position 1; purine position 6 to pyrimidine position 6.

If it is assumed that the bases only occur in the structure in the most plausible tautomeric forms (that is, with the keto rather than the enol configurations) it is found that only specific pairs of bases can bond together. These pairs are : adenine (purine) with thymine (pyrimidine), and guanine (purine) with cytosine (pyrimidine).

In other words, if an adenine forms one member of pair, on either chain, then on these assumptions the other member must be thymine ; similarly for guanine and cytosine. The sequence of bases on a single chain does not appear to be restricted in any way. However, if only specific pairs of bases can be formed, it follows that if the sequence of bases on one chain is given, then the sequence on the other chain is automatically determined.

It has been found experimentally3,4 that the ratio of the amounts of adenine to thymine, and the ratio of guanine to cytosine, are always very close to unity for deoxyribose nucleic acid.

It is probably impossible to build this structure with a ribose sugar in place of the deoxyribose, as the extra oxygen atom would make too close a van der Waals contact.

The previously published X-ray data^{5,6} on deoxyribose nucleic acid are insufficient for a rigorous test of our structure. So far as we can tell, it is roughly compatible with the experimental data, but it must be regarded as unproved until it has been checked against more exact results. Some of these are given in the following communications. We were not aware of the details of the results presented there when we devised our structure, which rests mainly though not entirely on published experimental data and stereochemical arguments.

It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material. Full details of the structure, including the conditions assumed in building it, together with a set of co-ordinates for the atoms, will be published elsewhere.

We are much indebted to Dr. Jerry Donohue for constant advice and criticism, especially on interatomic distances. We have also been stimulated by a knowledge of the general nature of the unpublished experimental results and ideas of Dr. M. H. F. Wilkins, Dr. R. E. Franklin and their co-workers at

738

King's College, London. One of us (J. D. W.) has been aided by a fellowship from the National Foundation for Infantile Paralysis.

J. D. WATSON F. H. C. CRICK Medical Research Council Unit for the

Study of the Molecular Structure of **Biological** Systems, Cavendish Laboratory, Cambridge. April 2.

¹ Pauling, L., and Corey, R. B., Nature, **171**, 346 (1953); Proc. U.S. Nat. Acid. Sci., **29**, 84 (1953). ⁵ Furberg, S., Acta Chem. Scand., **6**, 634 (1952).

³ Chargaff, E., for references see Zamenhof, S., Brawerman, G., and Chargaff, E., *Biochim. et Biophys. Acta*, 9, 402 (1952). ⁴ Wyatt, G. R., J. Gen. Physiol., 36, 201 (1952).
⁴ Astbury, W. T., Symp. Soc. Exp. Biol. 1, Nucleic Acid, 66 (Camb-Univ. Press, 1947).

Wilkins, M. H. F., and Randall, J. T., Biochim. et Biophys. Acta, 10, 192 (1953).

Molecular Structure of Deoxypentose Nucleic Acids

WHILE the biological properties of deoxypentose nucleic acid suggest a molecular structure containing great complexity, X-ray diffraction studies described here (cf. Astbury¹) show the basic molecular configuration has great simplicity. The purpose of this communication is to describe, in a preliminary way, some of the experimental evidence for the polynucleotide chain configuration being helical, and existing in this form when in the natural state. A fuller account of the work will be published shortly.

The structure of deoxypentose nucleic acid is the same in all species (although the nitrogen base ratios alter considerably) in nucleoprotein, extracted or in cells, and in purified nucleate. The same linear group of polynucleotide chains may pack together parallel in different ways to give crystalline1-3, semi-crystalline or paracrystalline material. In all cases the X-ray diffraction photograph consists of two regions, one determined largely by the regular spacing of nucleotides along the chain, and the other by the longer spacings of the chain configuration. The sequence of different nitrogen bases along the chain is not made visible.

Oriented paracrystalline deoxypentose nucleic acid ('structure B' in the following communication by Franklin and Gosling) gives a fibre diagram as shown in Fig. 1 (cf. ref. 4). Astbury suggested that the strong 3.4-A. reflexion corresponded to the internucleotide repeat along the fibre axis. The ~ 34 A. layer lines, however, are not due to a repeat of a polynucleotide composition, but to the chain configuration repeat, which causes strong diffraction as the nucleotide chains have higher density than the interstitial water. The absence of reflexions on or near the meridian immediately suggests a helical structure with axis parallel to fibre length.

Diffraction by Helices

It may be shown⁵ (also Stokes, unpublished) that the intensity distribution in the diffraction pattern of a series of points equally spaced along a helix is given by the squares of Bessel functions. A uniform continuous helix gives a series of layer lines of spacing corresponding to the helix pitch, the intensity distribution along the nth layer line being proportional to the square of J_n , the *n*th order Bessel function. A straight line may be drawn approximately through

Fig. 1. Fibre diagram of deoxypentose nucleic acid from B. coli. Fibre axis vertical

the innermost maxima of each Bessel function and the origin. The angle this line makes with the equator is roughly equal to the angle between an element of the helix and the helix axis. If a unit repeats n times along the helix there will be a meridional reflexion (J_0^a) on the *n*th layer line. The helical configuration produces side-bands on this fundamental frequency, the effect⁵ being to reproduce the intensity distribution about the origin around the new origin, on the nth layer line, corresponding to C in Fig. 2.

We will now briefly analyse in physical terms some of the effects of the shape and size of the repeat unit or nucleotide on the diffraction pattern. First, if the nucleotide consists of a unit having circular symmetry about an axis parallel to the helix axis, the whole diffraction pattern is modified by the form factor of the nucleotide. Second, if the nucleotide consists of a series of points on a radius at right-angles to the helix axis, the phases of radiation scattered by the helices of different diameter passing through each point are the same. Summation of the corresponding Bessel functions gives reinforcement for the inner-

Fig. 2. Diffraction pattern of system of helices corresponding to structure of doxypencies nucleic acid. The squares of Bessel second, blrie and fifth hyer times for half of the nucleotide mass at 20 A. diameter and remainder distributed along a radius, the mass at a given radius being proportional to the radius. About C on the tenth layer line similar finites are plotted for an outer diameter of 12 A.

von Bertalanffy & Bickis - 1956

Ludwig von Bertalanffy (1901-1972)

von Bertalanffy & Bickis (1956) The metachromatic fluorescence of AO was used to identify and quantitate RNA in tissues and that also that normal and malignant cells could be discriminated

"Identification of cytoplasmic basophilia (ribonucleic acid) by fluorescence microscopy" von Bertalanffy, L. Bickis, I.; Journal of Histochemistry and Cytochemistry 4: 481-493, 1956

FIG. 1. Interlobular connective tissue with blood vessels and mast cells, hepatic cells at the periphery. Frozen section, acetic alcohol 1:3, AO in Krebs-Ringer 1:10,000, pH 6 (15 min.), mounted in Krebs-Ringer pH 6, exposure to U.V. (10 min.) before taking picture. \times 180.

FIG. 2. Hepatic cells, connective tissue with mast cells. Procedure as in 1, but without exposure to U.V.

FIG. 3. Hepatic tissue. Red inclusions in cytoplasm. AO 1:5000 (10 min.), otherwise as in 1.

FIG. 4. Similar section, treated with RNase. Red fluorescence of cytoplasm and nucleoli has disappeared. Nuclei show darker green. One mast cell (upper half, left from center) visible, other red traces Kupffer cells. Acetic alcohol, dist. water (2 hrs.), AO 1:10,000 (15 min.), RNase 0.1%, 37°C. (2 hrs.), mounted in Krebs-Ringer.

Wallace Coulter

Wallace Coulter - Coulter orifice - 1956 -

(patent 1953) - measured changes in electrical conductance as cells suspended in saline passed through a small orifice

Coulter's Original 1953 Patent app'n From 1949

The first commercial version of the Coulter Counter

Cell Counting Theory

- The hemocytometer was the counting standard from about 1950 until the 1960's.
- the dimension of this device was 3x3x0.1 mm. Typically RBCs were counted using a 1:200 dilution from the 1 x 10⁶/mm³ in whole blood.
- Leukocytes (5x10³/mm³) were diluted 1:10 in a lysing reagent and a dye to stain nuclei
- Statistical variation is calculated by the following:

-The standard deviation of a count on n items in n

-Considering no more than 500 cells could be possibly counted manually the standard deviation would therefore be 22

-the coefficient of Variation (CV) is 22/500 or 4.4%

-add pipetting and dilution errors and its about 10%

Early Cell Counter

Early cell counter. Katherine Williams and C.S. Sanders (Atomic Energy Research Establishment) 1948 - Unclassified in 1956. (Photo taken in Science Museum, London UK by JPR)

©1990-2020 J. Paul Robinson, Purdue University BMS 631

The first Coulter Counter

High Speed Automatic Blood Cell Counter and Cell Size Analyzer

Wallace H. Coulter

Coulter Electronics, Chicago, Illinois

:1034-1042, 1956

From Coulter's only publication...

ACKNOWLEDGEMENT

An experimental model of the counter was constructed under Office of Naval Research Contract NONR-1054(00).

Figures 1 and 5 are taken from a paper by Dr. Carl F. T. Mattern, Dr. Frederick S. Brackett, and Dr. Byron J. Olson of the National, institutes Of Health, United States Public Health Service. Permission to use this material is gratefully acknowledged.

The new COULTER COUNTER provides *accuracy, speed and reliability* not approached by any other method.

- Counts in excess of 6,000 individual cells per second.
- Each count is equivalent, in number of cells counted, to the average of 100 chamber counts to reduce the sampling error by a factor of approximately 10 times.
- Unit takes its own precisely metered sample from a sample beaker to eliminate counting chamber errors.
- An oscilloscope display provides immediate information on relative cell size and relative size distribution.
- Threshold level control provides a means of rapidly obtaining complete cell size distribution data.
- Oscilloscope display providing a check of circuit performance coupled with simplicity of mechanical design affords highest reliability.
- Sensitivity extends to particles smaller than 2 microns.
- Sample capacity exceeds 100 counts per hour on a production basis.

Coulter Electronics 2525 N. Sheffield Ave., Chicago 14, Illinois

©1990-2020 J. Paul Robinson, Purdue U

Wallace Coulter - Coulter orifice - 1948-1956

9:18 PM

©1990-2020 J. Paul Robinson, Purdue University BMS 631

Hand-drawn advertising drafts of the first Coulter Counter (1956)

History of Cellular Clinical Diagnostics

1941-43 Landmark monograph: Diagnosis of Uterine Cancer by the Vaginal Smear. Authored by George N. Papanicolaou (an anatomist) and Herbert F. Traut (a gynecologist).

Arch Pathol Lab Med. 1997 Mar;121(3):211-24.

The diagnostic value of vaginal smears in carcinoma of the uterus. 1941. Papanicolaou GN, Traut HF.

PMID: 9111103

SUCCESS OF THE PAP SMEAR

1941 26,000 deaths per year in the United States due to cancer of the uterus as reported by Papanicolaou and Trout.

1996 4,900 estimated deaths per year in the United States due to cervical cancer with nearly a 2-fold increase in population in the intervening half century. At least half of these deaths are women who never had a Pap smear.

PAP TESTING IMPROVEMENTS

1951 Cytoanalyzer by Airborne instruments of Mineola, New York. Utilized World War II technology.1980s TICAS and CYBEST; Computer analysis and automated cytology projects. (These pioneering systems proved insufficient for general use).

2.-Group of normal basal cells. Menopause. ×800.

Fig. 3.-Group of abnormal cells. Carcinoma of cervix. ×800.

ig. 6.--Group of aberrant basal cells. Carcinoma of cervix. ×800.

Fig. 7.-Abnormal vacuolated cell. Carcinoma of cervix. ×800.

9:18 PM

Historical Overview

 Marylou Ingram – 1950-60's - identified that radiation caused increase number of binucleated lymphocytes in peripheral blood she used a scanner to detect these rare cells (1/10000)

FIG. 1. Left to right: Lymphocyte with bilobed nucleus (peroxidase stain). Other cells are red blood cells. Lymphocyte with bilobed nucleus (Wright's stain. This cell contains several azurophile granules. One lymphocyte with bilobed nucleus, one normal lymphocyte (peroxidase). Normal granulocyte showing characteristic dark peroxidase positive granules and one lymphocyte with bilobed nucleus (arrow). Science

Experimental Confirmation of a Previously Reported Unusual Finding in the Blood of Cyclotron Workers M. Ingram and S. W. Barnes

Science 113 (2924), 32-34. DOI: 10.1126/science.113.2924.32

2:13 PM

Marylou Ingram

CYTO2010 Congress, Seattle, WA, 2010

Marylou Ingram with Brandon Price

Marylou Ingram and Automated Imaging

- Marylou Ingram 1960's identified that radiation caused increase number of binucleated lymphocytes in peripheral blood she used a scanner to detect these rare cells (1/10000)
- **Preston 1964,** Cytoanalyzer was designed to identify Ingram's rare cells using a Vidicon based system digitized images of lymphocytes were produced stained with eosin-methylene azure dye combinations.

A cell pattern recognition system with great intrinsic versatility, the CELL-SCAN system, has been developed by Perkin-Elmer Corporation, Norwalk, Conn., based on an original concept, the "shrink" technique, of Dr. M. Golay.³⁻⁵ Its potentialities can be readily inferred from a general description of the system.

SCIENTIFIC AMERICAN

References: "Preparation of Cytologic Material for Automatic Scanning Machines" J.C.Pruitt, Ingraham, S.C.; Kaiser, R.F.; and Hilberg, A.W. – J. Nat. Cancer Inst. 22; 1105-1117, 1959 "Field Trial of the Cytoanalyzer; 1186 Specimens Analyzed" J.C.Pruitt, Courtney, W.B.; Hilberg, A.W.; Ingraham, S.C.; Kaiser, R.F. and Houser, M.H. J. Nat. Cancer Inst. 24; 1167-1179, 1960 "Importance of automatic pattern recognition techniques in the early detection of altered blood cell production"; Ingram, M. & Prestin, K.; Annals of the New York Academy of Sciences 113:1066-1072, 1964

Requirements of image analysis

Pattern recognition, feature extraction, parameters or descriptors, texture, color, staining properties

Question:

Why was it so difficult to do image analysis and image processing in the 1960's?

Answer: ?

(Hint: the driving force for flow cytometry was really the result of this issue)

Early Technology Developers

(Died Dec 25, 2019)

Photos taken in 1998 by JPR

CYDAC Analyzer - (1964) - Mendelsohn, Mayall, Prewitt (U.Pen)produced high resolution digital images of leukocytes - cells were stained with gallocyanin chrom alum and naphthol yellow S

Brian Mayall

©1990-2020 J. Paul Robinson, Purdue University BMS 631

Early flow systems

Hallermann et al, Kosenow - 1964 - AO staining of leukocytes - was able to use fluorescence (in a flow-based system) to select leukocytes from red cells despite a low ratio (1/1000) because they took up lots of AO - also claimed to be able to discriminate between monocytes and PMN

Molecular Formula: C₁₇H₂₀ClN₃ Molecular Weight: 301.82 CAS Number/Name: 65-61-2 / 3,6-Acridinediamine, N,N,N',N'-tetramethyl-, monohydrochloride

Preview

Elektronische Differentialzählung von Granulocyten und Lymphocyten nach intravitaler Fluochromierung mit Acridinorange

Von

L. HALLERMANN, R. THOM und H. GERHARTZ (Berlin)

Mit 1 Textabbildung

Automatisation und technische Perfektion haben auch der Routinediagnostik des klinischen Laboratoriums neue Wege eröffnet. So verwenden wir seit einigen Jahren elektronische Blutkörperchenzählgeräte; sie arbeiten entweder — wie der Coulter Counter und das Celloscop durch Erfassung des elektrischen Widerstandes der einzelnen, eine Düse durchströmenden Zelle, wodurch sie neben der numerischen Zählung auch eine Volumenanalyse gestatten, oder optisch, indem sie die Lichtimpulse von Blutzellen, die das Dunkelfeld eines Mikroskopes in einer Reihe passieren, mittels Sekundärelektronenvervielfachern qualitativ und quantitativ messen. Da diese Vorgänge ohne mechanische Überträger nahezu trägheitslos registriert werden, lassen sich Erythrocytenzählungen schneller und genauer durchführen, als dies in einer Hämocytometerkammer möglich ist.

Vergegenwärtigt man sich, daß im Normalblut weiße und rote Blutkörperehen im Verhältnis von etwa 1:800 vorliegen, so wird nicht nur die Exaktheit der Erythrocytenzählung, sondern zugleich auch die Problematik der Leukocytenzählung verständlich, insbesondere, da wir noch kein Medium kennen, das Erythrocyten ohne Alteration der Leukocyten restlos aufzulösen ermöglicht. Diese Schwierigkeit der Trennung läßt sich nach unserer Erfahrung bei Benutzung des EEL-Zählautomaten durch die Anwendung von Vitalfarbstoffen umgehen. Einige davon erzeugen im ultravioletten Licht in kernhaltigen Zellen eine intensive Fluorescenz, während in Erythrocyten keine Anfärbung erfolgt.

B. Schlegel (ed.), Verhandlungen der Deutschen Gesellschaft für Innere Medizin © Springer-Verlag Berlin Heidelberg 1964

Scan and structure from www.probes.com

Kamentsky

He also built a fluidic cell-sorter to evaluate the cells identified in his RCS. An RCS was sent to Stanford for use by Leonard Herzenberg. The unit was also the model for the Technicon D instrument built by Technicon. (*Reference: Shapiro*)

Kamensky's first benchtop instrument the Cytograph (1970). This measured scatter using a He-Ne laser. This particular instrument was a model prior to the fluorescence detection model.

Richard Sweet

Richard Sweet developed the electrostatic ink-jet printer which was the principle used by Mack Fulwyler to create a cell-sorter.

9:19 PM

Mack Fulwyler

Mack Fulwyler – worked in Marvin van Dilla's lab at Los Alamos. – developed the sorter in 1965 – initially used electronic cell volume - at Los Alamos National Labs - this instrument separated cells based on electronic cell volume (same principle as the Coulter counter) and used electrostatic deflection to sort. The cells sorted were RBC because they observed a bimodal distribution of cell volume when counting cells - the sorting principle was based on that developed for the inkjet printer by Richard Sweet at

Stanford in 1965.

Mack Fulwyler (Photo dated 6/91)

243

Marvin van Dilla (Photo dated 6/91)

Fig. 2.—Frequency distribution curve of erythrocyte volumes of human blood and its representation by two cell populations (A and B), each with a normal Gaussian distribution.

After determining that the bimodal distribution was artifactual, this group

were able to sort neutrophils and lymphocytes from blood. Lushbaugh, CC, Basmann,NJ, Glascock, B. Electronic measurement of cellular volumes.

Lushbaugh, CC, Basmann,NJ, Glascock, B. Electronic measurement of cellular volumes. II Frequency distribution of erythrocyte volume. Blood 1962 20:241-248 Correspondence Blood 1964:23:403-405 Page 50

9:19 PM

©1990-2020 J. Paul Robinson, Purdue University BMS 631

Here is Mack Fulwhyler telling the story

9:19 PM

©1990-2020 J. Paul Robinson, Purdue University BMS 631

Here is Marvin van Dilla on the Why they were interested in fluorescence

The mysterious red cell problem

When Fulwyler sorted a single population and reran that population through the Coulter Counter, he again saw the bimodal population proving that the bimodality was an artifact.

As a matter of interest, I spoke to Mack Fulwyler about this experiment, and he told me that the essentially determined the solution to this enormous problem in one afternoon, and after all that, they never actually published a paper about the problem....like good scientists, they just went on to solve a real (biological) problem!!!

9:19 PM

Fulwyler's Sorter

©1990-2020 J. Paul Robinson, Purdue University BMS 631

Page 54

- Introduction to course
- Reading and Support Materials
- History
- Technical Highlights

At the conclusion of this lecture you should:

- 1. Know what the requirements of this course are
- 2. Know where to track down information of importance
- 3. Understand a brief history of the development of flow technology
- 4. Be introduced into some of the fundamental principles
- 5. Have a perspective on why imaging was so difficult to do at the time

Note: If you use materials from this lecture series, please acknowledge the source

9:19 PM